Radio Telescope on Track

This post was originally published by Australia’s Science Channel on 29th July 2016 but was removed when the website was updated.

David Gozzard is a PhD student who has found himself on an interesting journey to remote Australia. In this blog, he shares some of the fun work he’s been up to!

When I started my PhD in experimental physics, I knew there would be a lot of travelling involved, mostly to conferences, meetings and workshops both in Australia and overseas. What I did not realize was how often I would find myself travelling to remote areas of Australia and South Africa to conduct field work. I’m not complaining. The field work is both challenging and rewarding, it gets me out of the lab, and it means I get to visit some of the world’s premier scientific facilities.

And that’s where I am now. After a four-hour flight from Perth to Sydney, a short hop from Sydney to Tamworth, and a two-hour drive from Tamworth to Narrabri (lugging two heavy cases full of scientific equipment), I find myself at the Paul Wild Observatory, home of CSIRO’s Australia Telescope Compact Array, the largest radio interferometer telescope in the southern hemisphere.

DSCN3166

Antennas 1 – 5 of the Australia Telescope Compact Array.

Built in the 1980s, the Compact Array is a radio telescope comprising six 270-tonne
dish-antennas, five of which can be driven to various positions along a 3 km track in order to change their view of the sky. Although it’s not as famous as The Dish at Parkes, the Compact Array holds the distinction of being the most scientifically productive radio telescope in the southern hemisphere. In radio engineering, the plural of “antenna” is “antennas”. Biologists, calm down.

DSCN3071

Me, driving antenna 3 during an array reconfiguration (see video below).

This is my 3rd trip to the Compact Array. I’m here to test equipment developed for the Square Kilometre Array (SKA) radio telescope. Radio telescope arrays like the Compact Array and the SKA need high-precision reference signals from atomic clocks to be transmitted to each antennas in order for the array to function properly. Over long transmission distances, the precision of these signals can become degraded and when that happens, the array fails.

On something the size of the Compact Array (6 km from one end to the other), this is not a problem; but for the SKA, which will have antennas located up to 150 km away from the centre of the site, signal degradation is a big problem. The equipment I have brought with me is designed to compensate for the degradation of the reference signal by measuring how the reference signal has been perturbed and modifying the transmission to compensate.

DSC08613

My signal stabilization test equipment setup at ATCA.

My supervisor and I have been developing this stabilization system over the past two years at The University of Western Australia, and we have tested its performance extensively in the laboratory. Now the time has come to plug it into a working radio telescope to confirm that it works in the real world!

Because this is a synthesis imaging telescope, every few weeks the antenna dishes are moved to different positions along a track to change how they image the sky. I was lucky enough to be allowed to take part in one of these array reconfigurations. Each of the six antennas weighs 270 tonnes and has a top speed of 4 km/h. Reconfiguration can take 1 – 2 hours depending on the extent of that day’s changes. Antenna 2 shown in the video was driven nearly 2 km in this reconfiguration job.

The Compact Array is the best facility to perform these tests because it was constructed with an almost unique receiver system that allows us to run the array using both its conventional reference distribution system and our stabilized reference system at the same time. Our system runs over an extra 77 km of fibre-optic cable to a communications hut and back. The telescope data from the conventional reference system can be compared directly with ours to see if the stabilization system is working as designed.

The Compact Array is the best facility to perform these tests because it was constructed with an almost unique receiver system that allows us to run the array using both its conventional reference distribution system and our stabilized reference system at the same time. Our system runs over an extra 77 km of fibre-optic cable to a communications hut and back. The telescope data from the conventional reference system can be compared directly with ours to see if the stabilization system is working as designed.

DSC08840

Me, sitting in the ATCA control room.

Working with the CSIRO team is an absolute pleasure. Everyone is very professional, they all know the systems they are responsible for insideout, and they are very helpful. The experiments that I have performed at the Compact Array would not have been possible without the efforts they made to accommodate my test schedule and the modifications I needed on some of the antennas.

DSC08859

This photo is the group of us who contributed to the work on this trip. The people in the photo are left-to-right: David Gozzard, Mike Hill, Sascha Schediwy, Peter Mirtschin, Jamie Stevens and Jock McFee (not pictured – Brett Lennon).

They also took a keen interest in the experiment itself. Many of the staff at the Compact Array reminisce about how it used to be, only a few years ago, when the site was buzzing with astronomers from Australia and around the world. Now, astronomers can operate the telescope remotely from Sydney or, in some cases, from the other side of the world. As a result, the onsite staff have seen their ranks halve as less support is needed. The engineers and other support staff miss being able to quiz astronomers about what they are using the telescope for, and what they are discovering.

Apart from the Compact Array itself, the observatory is home to a lot of Australian science history. The array occupies a site formerly used by the Culgoora radioheliograph (pictured below), which CSIRO used from the mid-60s through to the mid-80s
to perform groundbreaking studies of radio emissions from the Sun and solar outbursts.

DSCN3159

One dish of the Culgoora radioheliograph.

Most of the 96 dish-antennas from the radioheliograph still surround the site in a 3 km wide circle. Within that circle are also the Sydney University Stellar Interferometer, until recently used to make measurements of the size of distant stars; the CSIRO Applied Physics Solar Telescope, which studied the visible light from the Sun in conjunction with the radioheliograph; the Birmingham Solar Oscillations Network Telescope, used to study churning gas inside the Sun; and an IPS Radio and Space Services telescope, which monitors solar outbursts to forecast how they will affect space craft and radio communications.

As I write this, my time at the Compact Array is coming to an end. My experiments have worked, the stabilization system has performed well, and I am preparing to report the results to the SKA Office. And the results are looking good. The system reduces signal fluctuations to one part in ten trillion, over a 1-second period. If your wristwatch
was that stable, after 300,000 years it would be off by less than one second. This is more than 10 times better than the stability required by the SKA.

Now I just have to pack up my equipment and get ready for the journey home.

Further reading

Great Australians — Anthony Michell

We Australians excel at remembering and celebrating our sporting heroes, from cricketers to particularly successful race horses, but are not so good at celebrating the great people who helped build our civilization, particularly when those builders are Australian. Today, I want to celebrate the birthday of a revolutionary Australian engineer, A. G. M. Michell.

 

Innovator and Inventor

Anthony George Maldon Michell was an Australian engineer who made enormous contributions to a wide range of engineering sciences, from publishing the seminal work on structural optimization, to the invention of the Fluid-film Thrust Bearing. Michell’s inventions operate quietly in the background, but have made a huge impact on our every-day lives.

That's the guy.

Anthony George Maldon Michell (21 June 1870 – 17 February 1959) — engineer

Early life and education

Michell was born in London in 1870 while his parents were visiting from Australia, but grew up and attended primary school in Victoria. He returned to England to attend Grammar school and spent a year studying at Cambridge. He returned to Australia in 1889 to study engineering at the University of Melbourne.

Bearing the load

Of all of Michell’s inventions and innovations, the one that has had the greatest impact is the Michell Bearing, or Fluid-film Thrust Bearing, which he patented in 1905. Michell created a bearing with tilting load-pads that would maintain a thin film of lubricating oil between the metal surfaces. He mathematically derived the pressure distribution in the oil so that the pivot for the tilting pads could be optimally placed to ensure that the pads tilt automatically, under varying load, to the most efficient geometry. At the start of the 20th century, this bearing was revolutionary (pun intended). It could sustain enormous thrust loads with minimal wear and without overheating, while being only one tenth of the size of the bearings it replaced.

Under pressure, do do do didi do do...

Michell thrust bearing — the pads tilt automatically to the most efficient geometry

The low-friction of Michell’s bearings made them much more efficient. Within a decade they had found almost universal application in generators and ships’ thrust blocks. There was some reluctance by the British to adopt Michell Bearings in their ships, until the discovery that the German Navy were using Michell Bearings in their WWI U-Boats, which gave the U-Boats a range and speed that surprised the Royal Navy.

As well as being efficient, the low-wear of Michell Bearings mean they need little maintenance and are very reliable. A Michell Bearing installed at the Holtwood Hydroelectric Power Plant in Pennsylvania in 1912, supporting 165 tonnes of turbine and 40 tonnes of water pressure, is still in operation today. That bearing has been estimated to have a maintenance-free life of over 1000 years.

Michell Bearings, for their strength, efficiency, and reliability are still used on all large ships, power plants and turbines today.

Going with the flow

Another of Michell’s brilliant inventions is the Cross-flow turbine, which has found applications in hydroelectricity generation. This turbine is not used as often as the more common Kaplan, Francis, or Pelton type turbines because it has a lower maximum efficiency. However, cross-flow turbines have a much better efficiency than any of these three when operating at partial load. This gives cross-flow turbines an advantage in small-scale hydroelectric power generation, in situations, such as small rivers, where water flow and pressure can vary widely over the year. Cross-flow turbines are also easier to build, are easier to maintain, and are partially self-cleaning due to the way in which water flows through the blades of the rotor.

Does that count as giving credit?

Cross-flow turbine — image blatantly stolen from Wikipedia

Other innovations

Michell’s other notable innovations include the first published work on structural optimization. Unfortunately, Michell was ahead of his time and this field of research did not gain momentum until computers became a useful research tool some half-century later.

Michell also designed a crankless engine that drew on his work on the thrust bearing and used slipper-blocks on a slanted wobble-plate to convert the reciprocal motion of the pistons into rotary motion of an output shaft. By eliminating the crankshaft, connecting rods, and associated bearings, Michell’s crankless engines could be lighter and more compact than conventional automotive and stationary engines. Proper dynamic design of the wobble-plate also made the engine very low in vibration. Despite successful demonstrations, improved efficiency, and several licensed derivatives, the crankless engine failed to gain wide-spread acceptance and the company formed to produce and market the technology was placed into receivership.

Might be pushing it a bit there...

Michell’s crankless engine — image stolen from somewhere else

Later life

Michell was elected a Fellow of the Royal Society and received several prestigious awards including the Kernot Memorial Medal for distinguished engineering achievement in Australia, and the James Watt International Medal. He continued to make major contributions in engineering research until his death in 1959 at the age of 88.

 

When asked to list great Australian inventions, most Australians might include the Hills Hoist, Vegemite, the Victa lawnmower, and not much else. Michell, and his bearings that transformed movement and power in the 20th century, deserve to be amongst the first things a proud Australian should include on their list.

What the Detection of Gravitational Waves Means

Unless you live under a rock, the announcement in February of this year of the detection of Gravitational Waves by LIGO cannot have escaped your attention. Scientists around the world celebrated the achievement, and public curiosity about what all the scientists were yelling about was high enough that the world’s media ran the story for several days. Physicists and science communicators, whether they had anything to do with the discovery or not, were called upon to explain to the public what all the fuss was about.

If two Black Holes crash in deep space, and there is no detector to hear them, do they still make a Gravitational Wave?

The enormous release of energy from the collision of two Black Holes, detected for the first time

For a public that had never heard of Gravitational Waves before the announcement of their discovery, a key question that needed answering was, “So what does it mean?” Many scientists and science communicators did an outstanding job of answering this question, but their responses often left out an important element, that is, they did not answer the implied question, “what does it mean for me?”

Following the announcement earlier this week of a second Gravitational Wave detection (and another detection candidate), I want to take the opportunity to outline some of the ways in which the discovery of Gravitational Waves directly affects the average member of the public, but in the interest of providing a complete answer, I will first recap the importance of the discovery from a scientific perspective.

1) Amazing Achievement

First of all, the detection of Gravitational Waves is significant because it is direct confirmation of a prediction made 100 years ago by Albert Einstein. Einstein’s General Theory of Relativity is the best model physicists have for describing the action of gravity and the behaviour of the solar system, the galaxy, and the universe. Scientists constantly try to invent new experiments to push our understanding of the universe to the breaking point. It is by knowing the point at which our understanding of the universe fails that we are able to make the greatest progress. General Relativity has survived every test it has been subjected to for 100 years. Even the fact that GPS functions properly is a demonstration that Einstein’s General Theory of Relativity is correct.

In 1916, Einstein used General Relativity to predict that bodies orbiting each other, such as the Sun and Earth or two black holes, warp spacetime such that energy from the two bodies is carried away as ripples in the very fabric of the cosmos. These are Gravitational Waves, and their detection is not only another success for Einstein and General Relativity, but for the power of human ingenuity.

Insert fat joke here.

Gravitational Waves are ripples in spacetime caused by massive bodies in orbit

The LIGO detectors are the most sensitive instruments ever created and represent the culmination of 50 years of work by thousands of scientists. Although the first of the detected Gravitational Wave events represents an explosion 50 times more powerful than the power output of all the stars in the universe combined, the energy of the event has spread out and weakened during the 1.4 billion light-year trip to Earth, and so the LIGO detection represents the smallest amount of energy ever successfully detected. The very fact that humanity has the ability to detect Gravitational Waves is something we, as a species, can be proud of.

Couldn't think of funny alt-text.

The Advanced LIGO detectors in Livingston and Hanford

2) A New Spectrum, a New Science

The two confirmed and one candidate Gravitational Wave detections represent the beginning of a new era in studying the universe, a new way of doing astronomy, Gravitational Wave Astronomy.

All of astronomy, and everything we have discovered about our universe through astronomy, has been done using light. Whether we use radio telescopes, optical telescopes, or gamma-ray telescopes, all of these devices detect energy from the electro-magnetic spectrum, they all detect some form of light. Gravitational Waves are not a type of light. They exist in a completely different spectrum.

The Gravitational Wave spectrum gives astronomers a completely new way of studying the universe because the properties of Gravitational Waves are very different to those of electro-magnetic waves. Unlike light, Gravitational Waves are not absorbed by matter. They pass unhindered through the Earth, interstellar gas clouds, and entire galaxies. Unlike light, they cannot be blocked by stuff getting in the way. Gravitational Waves allow us to see past the bright glare of galaxies, and through vast interstellar dust clouds to corners of the universe our other telescopes will never be able to see.

We can also use Gravitational Waves to study things that don’t emit light. As far as our current theoretical understanding tells us, the collision of two black holes, like the Gravitational Waves events seen so far, should not emit any light. These events, and events like them, can only be studied using the Gravitational Wave spectrum.

Since the end of its first, and now famous, observing run, LIGO has been undergoing upgrades that will roughly double the sensitivity of the detector. With this boost in sensitivity, and based on the three events detected so far, Gravitational Wave physicists expect LIGO to detect around one event per week when it is switched back on later this year. With that amount of data, Gravitational Wave Astronomy will become a field in its own right, and one that will revolutionize our understanding of the universe by studying regions of the cosmos previously invisible to us.

woooooOOOOP!

Gravitational Waves open up a new spectrum with which to study the universe

3) What it means for me

The detection is an amazing technological achievement and Gravitational Wave detectors are some of the most advanced pieces of equipment in the world. To be able to build their detector, scientists and engineers have had to invent new technologies along the way, and these new technologies have a huge range of spin-offs and applications that will impact on our every-day lives.

To build the LIGO detectors, super-reflective mirror coatings and polishing techniques had to be developed, vibration isolators that guard against everything from minor earthquakes to people coughing had to be built, hyper-precise lasers and sensitive read-out systems had to be invented, and all of this had to operate in hard vacuum, even special super-hard glues had to be formulated. To actually detect the signal, advanced analysis software had to be written. This is only a taste of the work involved. The complete list of innovations by Gravitational Wave scientists would take dozens of pages to list like this, and I don’t even know most of them!

With this type and variety of advanced technology in the works, it is almost inevitable that other applications would be found for the scientists’ innovations. Just one example from the University of Western Australia, where I am studying for my PhD, is the Rio Tinto Gravity Gradiometer. This new technology, which will detect ore bodies from an aeroplane by measuring tiny changes in the Earth’s gravitational field, spun-off from Gravitational Wave research at UWA.

This thing sits in the lab across the hall from me.

The VK1 airborne Gravity Gradiometer will detect ore bodies below the ground, and spun-out from Gravitational Wave research

Over the coming decades, technology originally developed for Gravitational Wave detectors will be worth billions of dollars, create many thousands of jobs, and will enrich our every-day lives for generations to come.

 

If you’d like to learn more, you can go here to watch PhD comics explain Gravitational Waves.

Great Australians — Ruby Payne-Scott

We Australians excel at remembering and celebrating our sporting heroes, from cricketers to particularly successful race horses, but are not so good at celebrating the great people who helped build our civilization, particularly when those builders are Australian. Today, I want to celebrate the birthday of a brilliant Australian scientist, Ruby Payne-Scott.

 

Southern Star

Ruby Payne-Scott is remembered as one of Australia’s most outstanding physicists. As well as contributing to other sciences, she was a pioneer of radio astronomy and made major discoveries about the nature of radio emissions from the Sun. Payne-Scott also has the distinction of being the first female radio astronomer.

Ruby Payne-Scott (28 May 1912 – 25 May 1981) — Physicist, pioneering astronomer

Ruby Payne-Scott (28 May 1912 – 25 May 1981) — Physicist, pioneering astronomer

Early life and education

Ruby was born in 1912 in the town of Grafton, NSW. She demonstrated remarkable talent at school and moved to live with her aunt in Sydney, where she could get a better education. She was awarded honours in mathematics and botany, and won two scholarships to the University of Sydney where she studied physics, chemistry, mathematics, and botany. As was typical of the era, Ruby was often the only woman in her classes.

Research

Despite the prejudice and difficulty in getting a job that female physicists faced at the time (compounded by the Great Depression), Ruby’s excellent academic performance landed her a job as a physicist on the University of Sydney’s new cancer research project. One project she worked on was to determine the effect that the Earth’s magnetic field had on the vital processes of living beings. Working with William Love she cultivated chick embryos in magnetic fields up to 5000 times stronger than the Earth’s field. They found no observable differences in the chicks and determined that the magnetism of the Earth had little or no effect on living creatures.

The cancer research project closed down in 1935, and Ruby was forced to take one of the few career options open to educated women at the time, teaching. She completed a diploma of teaching and started working at a school in South Australia. Ruby was constantly alert for ways to get back into physics and eventually managed to land a job with Australian Wireless Amalgamated, a major hirer of physicists. Although she was hired as a librarian, Ruby managed to get involved in some research projects in the company’s standards laboratory and eventually worked her way into full-time research.

In 1939, Australia, following Britain’s lead, declared war on Germany. The CSIR (the precursor to the CSIRO) was charged with developing an Australian radar capability. As happened in Britain and the USA, mobilization for war created a shortage of trained men and provided women with the opportunity to break into jobs and careers they were previously bared from. Ruby and another woman, Joan Freeman, managed to get hired to work as researchers in the CSIR’s new Radiophysics laboratory. The women excelled in their roles, under the leadership of another great Australian physicist, Joe Pawsey, and both Ruby and Joan later commented that their colleagues treated them as “one of the boys”. The two women mainly had to deal with discrimination from administrators and petty bureaucrats who imposed absurd and unfair rules such as banning women from smoking or wearing shorts, rules which Ruby took the lead in breaking. Ruby even married her Husband, Bill Holman Hall, in secret in 1944 because married women were not allowed to hold permanent positions in government agencies.

Wartime radar research in Britain had discovered that the Sun occasionally produced significant amounts of radio waves. Excited by this, in their spare time Ruby and Joe Pawsey ran some experiments to follow up on this discovery, but did not have the right equipment to make the observations. When the war ended the Radio Physics laboratory was due to be scrapped, so the team put together an application to continue as a radio physics research division, concentrating on rain making and radio astronomy. At the time, radio astronomy was a very new field of research and the astronomy community showed very little interest. Despite this, the CSIR decided to fund radio physics and Australia remains a world leader in radio astronomy to this day.

Along with Joe Pawsey and Lindsay McCready, Payne-Scott used decommissioned radar equipment to make detailed radio-frequency observations of the Sun. This small team was the first to construct a radio-astronomy interferometer. Radio interferometers greatly increase the resolution of their observations by using a long baseline between two or more radio antennas. The CSIR team managed to construct an interferometer using only one antenna.

Great TV reception... Just had to wait for Australia to get TV.

Decommissioned radar antenna at Dover Heights, run by CSIR Radiophysics.

The radar antenna they were using was a coastal installation mounted on a sea-cliff. The antenna received radio signals directly from the Sun but also from reflections off the sea below. This simulated a baseline of around 200 metres between two antennas and allowed Payne-Scott, Pawsey and McCready to determine that solar radio radiation was coming from patches of the Sun that had sun-spots, a major discovery that boosted Australia’s international scientific reputation. The team also showed that the Sun’s corona has a temperature of over a million degrees centigrade, a phenomenon that remains a mystery to astrophysicists. Payne-Scott is also credited with the discovery of type I and type III solar outbursts.

Built to defend against the land of the rising Sun.

Dover heights sea-cliff interferometer — used to study the Sun

Workplace activist and career cut short

Throughout her time at the CSIR and its successor the CSIRO, Payne-Scott was an active advocate of equal rights and pay for women. She fearlessly and vocally opposed women’s workplace restrictions and pay reductions, clashing with CSIRO chairman Sir Ian Clunies Ross on several occasions. Eventually her secret marriage was discovered by CSIRO administrators and she was demoted to a temporary position. Payne-Scott left the CSIRO for good in 1951 (aged 39) to give birth to her son Peter.

Later life

Payne-Scott had a second child, a daughter named Fiona, and in 1963 returned to teaching. She retired in 1974 and died in 1981 at the age of 69.

Today, Ruby’s legacy is remembered in the CSIRO by the Payne-Scott award which is given to support the careers of women researchers. Her influence on radio astronomy and her discoveries means that her name is known by a large section of the Australian astronomy community, though they may not be completely aware of how hard Ruby had to fight to be able to do her ground-breaking research.

Who comes up with these Google doodles?

Google celebrated Ruby’s 100th birthday.

In 2012, on what would have been her 100th birthday, Ruby Payne-Scott was celebrated with a Google doodle. However, this great Australian is still completely unknown to the majority of Australian people. Ruby, her research, and her fight for women’s rights deserves greater recognition.

More information on the life and work of Ruby Payne-Scott can be found at the CSIRO Staff Association, National Archives, or Payne-Scott’s Wikipedia page.

Space for Innovation

Australia needs a space program.

As 2015 drew to a close, Prime Minister Malcom Turnbull unveiled the government’s Innovation Statement with a plan to invest $1.1 billion to drive an Australian “ideas boom”. Before this announcement, the government had already commenced its Review of the Space Activities Act 1998 stating that Australia is in a transition ‘to an advanced economy that cultivates and commercialises innovative technologies’ and that ‘there is significant potential for space technologies to play a role in facilitating this transition…’ It is high time Australia invested in a space program.

Australia is the only OECD country that does not have a space agency or coordinated space program. China and India both established space agencies in the mid-20th century which have contributed immensely to the countries’ technological capabilities and economic growth. Even Ethiopia has recognized the huge advantages afforded by a dedicated space program, establishing a space agency in August 2015.

Why does Australia need a space program?

In the 21st century a space program will be a key instrument for sustainable development. For the average person, the impact that space technologies have on their lives is not immediately obvious, often being hidden away behind some product, service, or app, but all of us benefit immensely every day from what space programs have brought us. We would all notice very quickly if we lost our GPS and satellite communication infrastructure, but space technology goes much further. Satellites are used for environmental monitoring, weather prediction, soil monitoring, water and agricultural management, as well as to search for ore bodies, track bushfires, and in disaster planning. This short list barely makes a dent in the complete list of important space technologies, and doesn’t even touch on the spin-offs, the technologies developed by space agencies that have found other uses and applications.

A space program will cultivate scientific thinking and technological innovation, and provide the training to engineers, scientists and students that Australia needs if we want to maximize the progress from our “ideas boom”.

A national space program will ensure that innovative ideas are exploited to their fullest by stabilizing funding to projects under its aegis. A space agency is also necessary if we are going to cooperate with other countries in the exploration and exploitation of space, since an agency with technical expertise that represents the Australian government will be in a position to negotiate with NASA, the ESA and other countries’ space agencies. An Australian space agency will even reduce the time and cost required to purchase flights on other countries’ launch vehicles.

I liked the picture of a satellite.

Out of sight, out of mind: vital technologies are operating overhead all the time.

They’re expensive. Couldn’t the money be better spent on something other than rockets?

When figures like NASA’s $19.3 billion 2016 budget are bandied around, and even a small space mission costs tens of millions of dollars, it often seems that space programs are too expensive to be worthwhile and that there are other problems we should be using this money to solve. However, put in context with other spending, a space program doesn’t appear to be so expensive.

NASA’s $19.3 billion represents only 0.5% of the US government’s spending, while the US military takes more than 15% of the total. The economic return to the USA gained from NASA’s products, patents, services, and spin-offs means that NASA more than pays its way. Australia is in a not-too-dissimilar position, with around A$30 billion being spent on defence. If we were to copy the US, we would direct around $1 billion to a space program. Australia has the money for a space program, it is only a matter of public choice and political will to divert the necessary funds. And that’s not even taking into account that space programs generate revenue for the government. History has shown that space programs are a very good investment. An Australian space program would begin to pay for itself after only a few years.

NASA’s $19.3 billion sounds like a lot less money when you take into consideration the huge range of projects NASA is responsible for. A reasonable summary of NASA’s active and on-going projects would fill a small book. They include climate and crop monitoring, satellite tracking, observational astrophysics, space-vehicle development, aeronautics, launch contracting, running a space-station and driving a nuclear-powered laser-equipped science-car on Mars. Australia is unlikely to match this commitment (at least in the short-term).

Individual space missions, even pioneering interplanetary missions, can be quite cheap when compared to other things we are willing to spend huge amounts of money on. India became the first country to successfully reach Mars orbit on its first go with the Mangalyaan Mars orbiter, which cost only US$73 million. Major blockbuster movies rarely cost less than $100 million these days. James Bond Spectre cost $245 million, the CGI movie Tangled cost $260 million, while Pirates of the Caribbean: On Stranger Tides cost an eye-watering $378.5 million.

Also, we do not have to spend big money on huge projects such as shuttles and space stations like Russia, China, and the US. The UK and Canadian space agencies provide a very good model for a similar Australian organization. We don’t need to have a launch vehicle, we just need to start contributing to international space project collaborations.

A space program is not a luxury. It is a key to a sustainable future and developing scientific thinking.

We should totally build one of these any way.

As cool as it would be to have one of these, this is probably not what an Australian space program will look like.

What have we got to offer?

I have come across the belief that Australia has little it can offer the international space science community (and therefore should leave space up to other countries) disturbingly often, and nothing could be further from the truth. Australia has had a small but outstanding role in space since the 1960s, and in a field as diverse as space research, there is always something we can offer both in international collaborations and from Australia-only projects.

Universities and research organizations across the country already have some involvement in space research. We are world leaders in the development of scramjet technology, we are internationally renowned in radio astronomy and computer sciences, we are participating in space missions such as eLISA and the GRACE follow-on, we have important deep-space tracking facilities, and we have the most productive geodetic observatory in the world.

A space program also affords Australia the opportunity to focus efforts on problems that are unique to Australia. This article in The Conversation from 2013 addresses the reasons why Australia urgently needs a space program to solve our own problems and to stop piggybacking on other countries’ space projects.

Western Australian Space Centre

The Western Australian Space Centre: the site of the world’s most productive laser ranging station.

What should we do?

We need to establish a space agency with its own slice of government funding. This is necessary to produce the funding stability I discussed previously and exploit space research to the full.

The Review of the Space Activities Act needs to provide appropriate recommendations so that future legislation minimizes red tape and makes it easy for Australian agencies and research organizations to conduct research within Australia, and to collaborate with other nations.

We need to start training our students for the space sector. A huge number of brilliant STEM students are being attracted to space science at the undergraduate level, but there are too few programs and training opportunities for all but a few of them to continue down this path. Increased support for space research at all levels of education will be needed to develop and exploit Australia’s intellectual resources and drive innovation.

We need to get the public excited about space through science communication, media attention, and school programs.

The public excitement will only grow as Australia’s space program progresses. By collaborating with NASA, the ESA and other space agencies and contributing to international projects, Australia will be eligible to select its own astronauts. While Australian-born Americans have flown in space, no one has gone to space with an Australian flag on their shoulder. The media attention surrounding Canada’s Chris Hadfield and the UK’s Tim Peake show just how much public excitement is generated by space flight, and with proper science communication efforts, this excitement will feed back into greater support for space science and the benefits it has to offer.

Has anyone got a suggestion for a good name for our space agency?

This is here just because I like this picture.

WRESAT: Australia’s first satellite.