The Value of a PhD

Stop telling me to “get a real job”: PhDs drive economic growth, as well as the progress of human knowledge

As a PhD student, questions I am often asked very shortly after “What do you do for a living?” include “What’s the point of that?” and “So when are you going to get a real job?” Science communication practice over the past couple of years (such as competing in 3-Minute Thesis and FameLab) has helped me to come up with concise answers to the first of these questions that satisfy the majority of my interrogators. I am also quick to point out that studying for a PhD is a real job and to explain the benefits of PhDs and academics to the nation. However, people often seem to disagree with my assertions about the contribution of PhDs to the public and to the economy, to the extent that many will repeat the question the next time they see me.

PhDs in your life

Everywhere you look you will find technology that was invented or developed by people with PhDs. The technologies your smartphone and computer are based on cannot be built without a working knowledge of quantum mechanics, GPS would fail without knowing how to apply Einstein’s General Theory of Relativity, and the medical practices that keep you healthy are only possible due to our understanding of the immensely complex system that is the human body. Tens, hundreds, or thousands of PhDs have contributed to the technologies and services that you rely on and enjoy every day. You owe your health and wellbeing to the diligent research of generations of PhDs.

A PhD student has many similarities with a tradesman’s apprentice. The apprentice/student learns the tools and skills of their trade guided by the knowledge and experience of their master/supervisor, producing useful work as they learn. Just as we expect an apprentice electrician or machinist to quickly gain a measurable level of competence, we expect PhD students to make significant contributions to scientific and technological progress from early on in their candidature (continuing this analogy, PhDs have a “post-doc” period similar to an apprentice’s journeyman years).

A common accusation I received before I learned to explain the significance of my work quickly (and still receive on occasion) is that my chosen field of research is so narrow that it is of no use or interest to anyone else. It is often the case that one scientist’s research can seem so focussed on one objective that it has no impact elsewhere. This is a matter of necessity. We live in such a rich and complicated cosmos that, today, the only way one person is able to make significant progress is to pick a direction and attack it. However, the accusation that their research is of no wider significance fails to take into account that we scientists do not work alone. We work in a team, playing our individual part in a global human effort to understand the world we live in and to improve our quality of life. No science exists in isolation, and each narrow field of research contributes to the growing expanse of collective human knowledge and progress.

But the accusation of narrowness is false too. The seemingly tight focus of my research is built upon a broad foundation of other skills and knowledge. I view my growing expertise in my field as something resembling a pyramid, with the narrow apex supported by a broad and sturdy base. When I finish my PhD, I will be the world expert in optically-sensed stabilized microwave reference dissemination systems, I will be a world expert in stabilized time and frequency transfer, an expert in microwave and optical transmission, fibre-optics, and radio-telescope engineering, all supported by a strong competence in electronics, computer aided design and simulation, and a variety of fields of physics including wave mechanics and General Relativity.

This only took slightly less effort than the Giza one.

Focused research is supported by a broad background of skills and expertise.

The job of a researcher is to seek answers and improve our understanding of the world we live in, to look forward and drive our progress as a species. Scientific research is the only defence humanity has against threats to our way of life, or even our survival.

The economic argument

I have met many people who, disconcertingly for me, view PhDs as a waste of taxpayers’ money. Indeed, government treasuries are often keen to see proof that their investment in research and in PhDs is not being wasted, or couldn’t be better spent elsewhere. In the United States, Congress has demanded that the National Science Foundation “better articulate the value of grants to the national interest.” Recognizing that failure to communicate the return-on-investment of grants places us at risk of losing government and public support, researchers have challenged themselves to come up with scientific evidence on the impact of government investment in research. Late last year, a study published in Science demonstrated a significant way in which PhDs (and thus, the government grants that supported them) make an impact on the economy.

The study showed that PhDs disproportionately gained jobs in high-productivity, high-payroll establishments performing research and development, firms that that typically have a much greater economic impact. The study also showed that the majority of PhDs gained jobs close to where they had studied. Together, the evidence shows that PhDs make a substantial contribution to the economy that supported them, and that investment in PhD funding and research grants is well-founded.

More broadly, there is much historical evidence to show that research drives economic growth. Scientific and technological research produces new technology and ideas, that create new products and services, that create new jobs.


PhDs are no less real jobs than a trade apprenticeship. PhD students work hard to contribute not just to the economy, but to increasing knowledge and progress for the benefit of all humanity.